
Partiële differentiaalvergelijkingen, WIPDV-07 2011/12 semester II a

Examination, April 13th, 2012.

Name Student number

Notes:

• You may use one sheet (single side written) with notes from the lectures.

• During the exam it is NOT permitted to consult books, handouts, other notes.

• Numerical/graphic calculators are permitted, symbolic calculators are NOT permited.

• Devices with wireless internet connection and/or document readers are NOT permitted.

• To pass the exam, You need to gather at least half of the total points at the final exam.

• Hint: please describe the solution procedures in full details, not only the results.

TEST (to be returned by 17:00)

1. [6 pts] Find the solution u = u(x, t) of the following initial-boundary-value problem

u2∂u

∂x
+
∂u

∂t
= 0, x > 0, t > 0,

with

u(x, 0) =
√
x x > 0,

u(0, t) = 0 t > 0.

Solution:
We use the methods of characteristics. Characteristic equations are

dx

dr
= u2

and

dt

dr
= 1, ⇒ t = r.

Then we have

du

dr
= 0 ⇒ u = constant on characteristic = F (x0).



Hence,

x = u2r + x0 = u2t+ x0,

since u is constant along the characteristic and dx/dr is the derivative of x along the
characteristic curve. Therefore, we have

x0 = x− u2t.

Thus, substituting for x0 into F (x0) we obtain the implicit solution

u(x, t) = F (x− u2t),

where F is determined by the initial condition, namely, t = 0, x = x0 and u =
√
x0. Thus,

F (x0) =
√
x0 and so

u =
√
x− u2t, x− u2t > 0.

Squaring both sides, we can manipulate this solution into an explicit solution for u in
terms of x and t.

u2 = x− u2t,

u2(1 + t) = x,

u2 =
x

1 + t
,

and so the final solution is

u =
√

x

1 + t
, x > 0, t > 0.

We can easily check that this is the solution to the assigned initial-boundary value problem
by calculating the partial derivatives,

∂u

∂x
=

1
2
x−1/2(1 + t)−1/2,

∂u

∂t
= −1

2
x1/2(1 + t)−3/2,

Therefore,

u2∂u

∂x
=

x

1 + t

1
2x1/2(1 + t)3/2

=
1
2

x1/2

(1 + t)3/2
= −∂u

∂t
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2. [6 pts] Solve the problem

utt − uxx = 1, −∞ < x <∞, t > 0,

u(x, 0) = x2, −∞ < x <∞,
ut(x, 0) = 1, −∞ < x <∞.

Solution:
To obtain a homogeneous equation, we use the substitution v(x, t) = u(x, t) − t2/2. The
initial condition is unchanged. We conclude that v solves the problem

vtt − vxx = 0, v(x, 0) = x2, vt(x, 0) = 1.

Using dAlemberts formula we get

v(x, t) =
1
2

[
(x+ t)2 + (x− t)2

]
+ t = x2 + t2 + t,

that is, u(x, t) = x2 + t+ 3t2/2.

3. [5 pts] Let u(x, t) be a solution of the problem

ut − uxx = 0, QT = {(x, t) | 0 < x < π, 0 < t ≤ T} ,
u(0, t) = u(π, t) = 0, 0 6 t 6 T,

u(x, 0) = sin2(x), 0 6 x 6 π.

Without computing the solution u(x, t) explicitly, prove that 0 6 u(x, t) 6 e−t sin(x) in
the rectangle QT .

Hint: you may use the maximum principle.

Solution:
The function w(x, t) = e−t sinx solves the problem

wt − wxx = 0, (x, t) ∈ QT ,
w(0, t) = w(π, t) = 0, 0 6 t 6 T,

w(x, 0) = sin(x), 0 6 x 6 π.

On the parabolic boundary 0 ≤ u(x, t) ≤ w(x, t), and therefore, from the maximum
principle 0 ≤ u(x, t) ≤ w(x, t) in the entire rectangle QT .

4. Consider the function given by f(x) = |x| if 0 ≤ x ≤ p.

(a) [2 pts] Find the even 2p-periodic extension, f̄(x), of f(x) in the interval −p ≤ x ≤ p.
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(b) [3 pts] Find the full Fourier series of f̄(x) (give also the expression for the Fourier
coefficients).

(c) [3 pts] Judge if the Fourier series of f̄(x) converges pointwise to f̄(x) for every x.

(d) [4 pts] Using the Fourier series of f̄(x), computed at point (b), find the Fourier series
of the 2p-periodic function given by

g(x) =


a

(
1 +

1
p
x

)
, if − p 6 x 6 0

a

(
1− 1

p
x

)
, if 0 6 x 6 p

Solution:

(a) The 2p-periodic extension, f̄(x), of f(x) in the interval −p ≤ x ≤ p is obtained by
reflecting f(x) with respect to the vertical axis in the interval −p ≤ x ≤ 0, and then
repeating the resulting function in any other interval of length 2p.

(b) We compute the Fourier coefficients of the full Fourier series of f̄(x) using the theorem
seen in the course

a0 =
1
2p

∫ p

−p
f(x)dx =

p

2
.

To compute an we take advantage of the fact that f(x) cos nπp x is an even function
and write

an =
1
p

∫ p

−p
f(x) cos

nπ

p
xdx =

2
p

∫ p

0
f(x) cos

nπ

p
xdx =

=
2
p

∫ p

0
x cos

nπ

p
xdx =

−2p
π2n2

(1− cosnπ) ,

where the last integral is evaluated by parts. Since cosnπ = (−1)n, an = 0 if n is
even, and an = −4p

π2n2 if n is odd. A similar computation shows that bn = 0 for all n
(since f is even). We thus obtain the Fourier series

f(x) =
p

2
− 4p
π2

(
cos

π

p
x+

1
32

cos
3π
p
x+

1
52

cos
5π
p
x+ · · ·

)
.
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(c) Because f is continuous and piecewise smooth, applying convergence theorems of
Fourier series we may conclude that the Fourier series converge to f̄(x) for all x.

(d) Comparing the figure below with f̄(x), we see that we can obtain the graph of g by
translating the graph of f̄(x) upward by p units, and then scaling it by a factor of a

p .

This is expressed by writing

g(x) =
a

p
(−f(x) + p) = a− a

p
f(x).

Now to get the Fourier series of g, all we have to do is perform these operations on
the Fourier series of f̄ . We get

g(x) = a− a
(

1
2
− 4
π2

(
cos

π

2
x+

1
32

cos
3π
p
x+

1
52

cos
5π
p
x+ · · ·

))
=
a

2
+

4a
π2

(
cos

π

p
x+

1
32

cos
3π
p
x+

1
52

cos
5π
p
x+ · · ·

)
.

In compact form, we have

g(x) =
a

2
+

4a
π2

∞∑
k=0

1
(2k + 1)2

cos
(2k + 1)π

p
x.

5. [7 pts] Find the solution u(x, y) of the reduced Helmholtz equation ∆u − ku = 0 (k is a
positive parameter) in the square 0 < x, y < π, where u satisfies the boundary condition

u(0, y) = 1, u(π, y) = u(x, 0) = u(x, π) = 0.

Solution:
We solve by the separation of variables method: u(x, y) = X(x)Y (y). We obtain

X ′′Y + Y ′′X = kXY ⇒ −Y
′′

Y
=
X ′′

X
− k = λ.
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We derive for Y a SturmLiouville problem

Y ′′ + λY = 0, Y (0) = Y (π) = 0.

Therefore, the eigenvalues and eigenfunctions are

λn = n2, Yn(y) = sinny, n = 1, 2, . . .

Then, for X we obtain

(Xn)′′ − (k + n2)Xn = 0⇒ Xn(x) = Ane
√

(k+n2)x +Bne
−
√

(k+n2)x.

The general solution is thus

u(x, y) =
∞∑
n=1

[
Ane
√

(k+n2)x +Bne
−
√

(k+n2)x
]

sinny.

The boundary conditions in the x direction are expressed as

u(0, y) =
∞∑
n=1

(An +Bn) sinny = 1,

u(π, y) =
∞∑
n=1

[
Ane
√

(k+n2)π +Bne
−
√

(k+n2)π
]

sinny = 0.

We expand f(y) = 1 into a sine series

1 =
∞∑
n=1

bn sinny,

bn =
2
π

∫ π

0
sin(ny)dy =

−2
πn

[(−1)n − 1] .

Comparing coefficients yields

An = − bne
−
√

(k+n2)π

e
√

(k+n2)π − e−
√

(k+n2)π
, Bn =

bne
√

(k+n2)π

e
√

(k+n2)π − e−
√

(k+n2)π

6. [4 pts] Given a bounded region A ⊂ Rn , show using Green’s first identity that the
Dirichlet problem

∆u(x) = f(x) when x ∈ A, u(x) = g(x) when x ∈ ∂A

has at most one solution.
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Solution:
If u, v are both solutions, then w = u− v is harmonic and also zero on the boundary. By
Green’s identity then, we have∫

A
w∆wdx = −

∫
A
∇w · ∇wdx+

∫
∂A
w∇w · ndS,

where both the leftmost and the rightmost integrals are zero. This implies∫
A
∇w · ∇wdx = 0 =⇒

n∑
i=1

∫
∂A
w2
xi
dx = 0,

so w is constant. Given that w = 0 on the boundary, we get w = 0 at all points.
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