Partiële differentiaalvergelijkingen, WIPDV-07 2011/12 semester II a

 Examination, April 13th, 2012.Name
Student number

Notes:

- You may use one sheet (single side written) with notes from the lectures.
- During the exam it is NOT permitted to consult books, handouts, other notes.
- Numerical/graphic calculators are permitted, symbolic calculators are NOT permited.
- Devices with wireless internet connection and/or document readers are NOT permitted.
- To pass the exam, You need to gather at least half of the total points at the final exam.
- Hint: please describe the solution procedures in full details, not only the results.

TEST (to be returned by 17:00)

1. [$\mathbf{6} \mathbf{~ p t s}$] Find the solution $u=u(x, t)$ of the following initial-boundary-value problem

$$
u^{2} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}=0, \quad x>0, t>0
$$

with

$$
\begin{array}{cc}
u(x, 0)=\sqrt{x} & x>0, \\
u(0, t)=0 & t>0 .
\end{array}
$$

Solution:

We use the methods of characteristics. Characteristic equations are

$$
\frac{d x}{d r}=u^{2}
$$

and

$$
\frac{d t}{d r}=1, \quad \Rightarrow \quad t=r
$$

Then we have

$$
\frac{d u}{d r}=0 \quad \Rightarrow \quad u=\text { constant on characteristic }=F\left(x_{0}\right)
$$

Hence,

$$
x=u^{2} r+x_{0}=u^{2} t+x_{0},
$$

since u is constant along the characteristic and $\mathrm{dx} / \mathrm{dr}$ is the derivative of x along the characteristic curve. Therefore, we have

$$
x_{0}=x-u^{2} t .
$$

Thus, substituting for x_{0} into $F\left(x_{0}\right)$ we obtain the implicit solution

$$
u(x, t)=F\left(x-u^{2} t\right),
$$

where F is determined by the initial condition, namely, $t=0, x=x_{0}$ and $u=\sqrt{x_{0}}$. Thus, $F\left(x_{0}\right)=\sqrt{x_{0}}$ and so

$$
u=\sqrt{x-u^{2} t}, \quad x-u^{2} t>0 .
$$

Squaring both sides, we can manipulate this solution into an explicit solution for u in terms of x and t.

$$
\begin{aligned}
u^{2} & =x-u^{2} t, \\
u^{2}(1+t) & =x \\
u^{2} & =\frac{x}{1+t},
\end{aligned}
$$

and so the final solution is

$$
u=\sqrt{\frac{x}{1+t}}, \quad x>0, t>0 .
$$

We can easily check that this is the solution to the assigned initial-boundary value problem by calculating the partial derivatives,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{1}{2} x^{-1 / 2}(1+t)^{-1 / 2} \\
& \frac{\partial u}{\partial t}=-\frac{1}{2} x^{1 / 2}(1+t)^{-3 / 2}
\end{aligned}
$$

Therefore,

$$
u^{2} \frac{\partial u}{\partial x}=\frac{x}{1+t} \frac{1}{2 x^{1 / 2}(1+t)^{3 / 2}}=\frac{1}{2} \frac{x^{1 / 2}}{(1+t)^{3 / 2}}=-\frac{\partial u}{\partial t}
$$

2. [$\mathbf{6} \mathbf{p t s}$] Solve the problem

$$
\begin{array}{ll}
u_{t t}-u_{x x}=1, & -\infty<x<\infty, \quad t>0, \\
u(x, 0)=x^{2}, & -\infty<x<\infty, \\
u_{t}(x, 0)=1, & -\infty<x<\infty
\end{array}
$$

Solution:

To obtain a homogeneous equation, we use the substitution $v(x, t)=u(x, t)-t^{2} / 2$. The initial condition is unchanged. We conclude that v solves the problem

$$
v_{t t}-v_{x x}=0, v(x, 0)=x^{2}, v_{t}(x, 0)=1 .
$$

Using dAlemberts formula we get

$$
v(x, t)=\frac{1}{2}\left[(x+t)^{2}+(x-t)^{2}\right]+t=x^{2}+t^{2}+t,
$$

that is, $u(x, t)=x^{2}+t+3 t^{2} / 2$.
3. [$\mathbf{5} \mathbf{~ p t s}$] Let $u(x, t)$ be a solution of the problem

$$
\begin{array}{ll}
u_{t}-u_{x x}=0, & Q_{T}=\{(x, t) \mid 0<x<\pi, 0<t \leq T\}, \\
u(0, t)=u(\pi, t)=0, & 0 \leqslant t \leqslant T, \\
u(x, 0)=\sin ^{2}(x), & 0 \leqslant x \leqslant \pi .
\end{array}
$$

Without computing the solution $u(x, t)$ explicitly, prove that $0 \leqslant u(x, t) \leqslant e^{-t} \sin (x)$ in the rectangle Q_{T}.

Hint: you may use the maximum principle.

Solution:

The function $w(x, t)=e^{-t} \sin x$ solves the problem

$$
\begin{array}{ll}
w_{t}-w_{x x}=0, & (x, t) \in Q_{T}, \\
w(0, t)=w(\pi, t)=0, & 0 \leqslant t \leqslant T, \\
w(x, 0)=\sin (x), & 0 \leqslant x \leqslant \pi .
\end{array}
$$

On the parabolic boundary $0 \leq u(x, t) \leq w(x, t)$, and therefore, from the maximum principle $0 \leq u(x, t) \leq w(x, t)$ in the entire rectangle Q_{T}.
4. Consider the function given by $f(x)=|x|$ if $0 \leq x \leq p$.
(a) [$\mathbf{2} \mathbf{~ p t s}$] Find the even $2 p$-periodic extension, $\bar{f}(x)$, of $f(x)$ in the interval $-p \leq x \leq p$.
(b) [$\mathbf{3} \mathbf{p t s}]$ Find the full Fourier series of $\bar{f}(x)$ (give also the expression for the Fourier coefficients).
(c) [3 pts] Judge if the Fourier series of $\bar{f}(x)$ converges pointwise to $\bar{f}(x)$ for every x.
(d) [4 pts] Using the Fourier series of $\bar{f}(x)$, computed at point (b), find the Fourier series of the $2 p$-periodic function given by

$$
g(x)= \begin{cases}a\left(1+\frac{1}{p} x\right), & \text { if }-p \leqslant x \leqslant 0 \\ a\left(1-\frac{1}{p} x\right), & \text { if } 0 \leqslant x \leqslant p\end{cases}
$$

Solution:

(a) The $2 p$-periodic extension, $\bar{f}(x)$, of $f(x)$ in the interval $-p \leq x \leq p$ is obtained by reflecting $f(x)$ with respect to the vertical axis in the interval $-p \leq x \leq 0$, and then repeating the resulting function in any other interval of length $2 p$.

(b) We compute the Fourier coefficients of the full Fourier series of $\bar{f}(x)$ using the theorem seen in the course

$$
a_{0}=\frac{1}{2 p} \int_{-p}^{p} f(x) d x=\frac{p}{2} .
$$

To compute a_{n} we take advantage of the fact that $f(x) \cos \frac{n \pi}{p} x$ is an even function and write

$$
\begin{aligned}
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \frac{n \pi}{p} x d x=\frac{2}{p} \int_{0}^{p} f(x) \cos \frac{n \pi}{p} x d x= \\
& =\frac{2}{p} \int_{0}^{p} x \cos \frac{n \pi}{p} x d x=\frac{-2 p}{\pi^{2} n^{2}}(1-\cos n \pi),
\end{aligned}
$$

where the last integral is evaluated by parts. Since $\cos n \pi=(-1)^{n}, a_{n}=0$ if n is even, and $a_{n}=\frac{-4 p}{\pi^{2} n^{2}}$ if n is odd. A similar computation shows that $b_{n}=0$ for all n (since f is even). We thus obtain the Fourier series

$$
f(x)=\frac{p}{2}-\frac{4 p}{\pi^{2}}\left(\cos \frac{\pi}{p} x+\frac{1}{3^{2}} \cos \frac{3 \pi}{p} x+\frac{1}{5^{2}} \cos \frac{5 \pi}{p} x+\cdots\right) .
$$

(c) Because f is continuous and piecewise smooth, applying convergence theorems of Fourier series we may conclude that the Fourier series converge to $\bar{f}(x)$ for all x.
(d) Comparing the figure below with $\bar{f}(x)$, we see that we can obtain the graph of g by translating the graph of $\bar{f}(x)$ upward by p units, and then scaling it by a factor of $\frac{a}{p}$.

Figure A $2 p$-periodic triangular wave.

This is expressed by writing

$$
g(x)=\frac{a}{p}(-f(x)+p)=a-\frac{a}{p} f(x) .
$$

Now to get the Fourier series of g, all we have to do is perform these operations on the Fourier series of \bar{f}. We get

$$
\begin{aligned}
& g(x)=a-a\left(\frac{1}{2}-\frac{4}{\pi^{2}}\left(\cos \frac{\pi}{2} x+\frac{1}{3^{2}} \cos \frac{3 \pi}{p} x+\frac{1}{5^{2}} \cos \frac{5 \pi}{p} x+\cdots\right)\right) \\
& =\frac{a}{2}+\frac{4 a}{\pi^{2}}\left(\cos \frac{\pi}{p} x+\frac{1}{3^{2}} \cos \frac{3 \pi}{p} x+\frac{1}{5^{2}} \cos \frac{5 \pi}{p} x+\cdots\right) .
\end{aligned}
$$

In compact form, we have

$$
g(x)=\frac{a}{2}+\frac{4 a}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \cos \frac{(2 k+1) \pi}{p} x .
$$

5. [$\mathbf{7} \mathbf{p t s}$] Find the solution $u(x, y)$ of the reduced Helmholtz equation $\Delta u-k u=0$ (k is a positive parameter) in the square $0<x, y<\pi$, where u satisfies the boundary condition

$$
u(0, y)=1, u(\pi, y)=u(x, 0)=u(x, \pi)=0 .
$$

Solution:

We solve by the separation of variables method: $u(x, y)=X(x) Y(y)$. We obtain

$$
X^{\prime \prime} Y+Y^{\prime \prime} X=k X Y \Rightarrow \frac{-Y^{\prime \prime}}{Y}=\frac{X^{\prime \prime}}{X}-k=\lambda .
$$

We derive for Y a SturmLiouville problem

$$
Y^{\prime \prime}+\lambda Y=0, Y(0)=Y(\pi)=0
$$

Therefore, the eigenvalues and eigenfunctions are

$$
\lambda_{n}=n^{2}, Y_{n}(y)=\sin n y, n=1,2, \ldots
$$

Then, for X we obtain

$$
\left(X_{n}\right)^{\prime \prime}-\left(k+n^{2}\right) X_{n}=0 \Rightarrow X_{n}(x)=A_{n} e^{\sqrt{\left(k+n^{2}\right) x}}+B_{n} e^{-\sqrt{\left(k+n^{2}\right) x}}
$$

The general solution is thus

$$
u(x, y)=\sum_{n=1}^{\infty}\left[A_{n} e^{\sqrt{\left(k+n^{2}\right)} x}+B_{n} e^{-\sqrt{\left(k+n^{2}\right)} x}\right] \sin n y
$$

The boundary conditions in the x direction are expressed as

$$
\begin{aligned}
& u(0, y)=\sum_{n=1}^{\infty}\left(A_{n}+B_{n}\right) \sin n y=1 \\
& u(\pi, y)=\sum_{n=1}^{\infty}\left[A_{n} e^{\sqrt{\left(k+n^{2}\right)} \pi}+B_{n} e^{-\sqrt{\left(k+n^{2}\right)} \pi}\right] \sin n y=0 .
\end{aligned}
$$

We expand $f(y)=1$ into a sine series

$$
\begin{aligned}
& 1=\sum_{n=1}^{\infty} b_{n} \sin n y, \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (n y) d y=\frac{-2}{\pi n}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Comparing coefficients yields

$$
A_{n}=-\frac{b_{n} e^{-\sqrt{\left(k+n^{2}\right)} \pi}}{e^{\sqrt{\left(k+n^{2}\right)} \pi}-e^{-\sqrt{\left(k+n^{2}\right)} \pi}}, B_{n}=\frac{b_{n} e^{\sqrt{\left(k+n^{2}\right)} \pi}}{e^{\sqrt{\left(k+n^{2}\right)} \pi}-e^{-\sqrt{\left(k+n^{2}\right)} \pi}}
$$

6. [4 pts] Given a bounded region $A \subset \mathbb{R}^{n}$, show using Green's first identity that the Dirichlet problem

$$
\Delta u(x)=f(x) \text { when } x \in A, \quad u(x)=g(x) \text { when } x \in \partial A
$$

has at most one solution.

Solution:

If u, v are both solutions, then $w=u-v$ is harmonic and also zero on the boundary. By Green's identity then, we have

$$
\int_{A} w \Delta w d x=-\int_{A} \nabla w \cdot \nabla w d x+\int_{\partial A} w \nabla w \cdot n d S
$$

where both the leftmost and the rightmost integrals are zero. This implies

$$
\int_{A} \nabla w \cdot \nabla w d x=0 \Longrightarrow \sum_{i=1}^{n} \int_{\partial A} w_{x_{i}}^{2} d x=0
$$

so w is constant. Given that $w=0$ on the boundary, we get $w=0$ at all points.

